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MOTIVATION 

Research and innovation in materials science is a fundamental key for a sustainable technological and industrial 

development in Europe. New materials and new manufacturing processes lead to new industries, new technologies, 

new business models and, also, new challenges. Nowadays, materials science must deal with complex materials and 

advance manufacturing process which require new methodologies for material modelling and characterization. 

Artificial intelligence has been changing most areas of industrial technology during the last and present decades, as 

a part of the so-called Industry 4.0 revolution. The automation, the introduction of smart and autonomous systems 

and the implementation of complex controllers have strongly influenced manufacturing and process facilities. One 

area where artificial intelligence, and in particular deep learning, offer a big potential is quality control. The 

application of smart cameras on production lines has automated quality inspection, which was otherwise done 

manually. This has increased the production speed and product reliability, while simultaneously reducing 

manufacturing time and cost. Manufacturers have been using cameras in quality control applications for many years, 

but the joining with deep learning represents a jump from earlier technologies. The combination of measurements, 

multiphysics/multiscale modelling and ML or DL will further amplify the information obtained, framing the problem, 

and giving a powerful tool for decision making. 

Data driven models are considered a new paradigm in Material Science [1][2]. The power of big data, machine 

learning, artificial intelligence, data management, open data… is not completely applied in data-driven materials 

science. New branches such as materials informatics or hybrid modelling are emerging thanks to supercomputers 

and high-performance algorithms that make it possible to manipulate huge amounts of data. The hybrid models are 

powerful alternatives to physical modelling leveraging the innovations in Machine Learning (ML) and Deep Learning 

(DL) offering a real time solution for quality control.  

ADVANCED MATERIAL SIMULATION company aspires to develop and validate a new and original hybrid 

modelling methodology based on the combination of advanced modelling, and artificial intelligence The 

methodology will be applied to industrial manufacturing levels to maximize the information extracted from testing, 

developing new real time tools. 

METHODOLOGY 

Some NN architectures have been identified as potentially useful in hybrid modelling combining data-driven with 

physical laws; for example, surrogate models, Bayesian neural networks, and Physics informed neural networks. The 

tight link between machine learning and multiscale modeling is a two-way interaction. Data-driven, generative 

models can create new datasets for multiscale models, and, conversely, multiscale modeling can provide training or 

test instances to create new surrogate models. Neural networks can be classified as deterministic or probabilistic. 



Probabilistic neural networks go beyond single value predictions and capture the variation of real data and the 

uncertainty, determining the whole probability distribution. An example of a probabilistic neural network is a 

Gaussian process. A Gaussian process is a generalization of the Gaussian probability distribution and a particular 

case of the Bayesian neural network. The use of Bayesian neural network can help to identify unreliable predictions. 

The purpose of this type of models, that combine Bayesian inference with neural networks, is to quantify the 

uncertainty introduced by the models in terms of output and to explain the trustworthiness of the prediction. The 

weights and output of the model are statistical distribution, not unique values.  

 

 

Data-driven models formulated with machine learning or deep learning can be viewed as an alternative to classical 

physics when the amount of available data is sufficient. The small data regime entails NN architectures as physics-

informed neural networks, which are essentially data-efficient learning machines capable of leveraging the 

underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract 

patterns from high dimensional data generated from experiments. 

The methodology provides a promising new direction for harnessing the long-standing developments of classical 

methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in 

complex domains without requiring large quantities of data. Physics informed neural networks are intermediate tools 

that enhance classical numerical methods for solving partial differential equations (e.g., finite elements, spectral 

methods, etc.). Classical methods can coexist in harmony with deep neural networks and offer invaluable intuition in 

constructing structured predictive algorithms. This combination simplifies the implementation opening a potential 

for new possibilities in material science and data-driven scientific computing. 

VALIDATION STRATEGY 

A good example to validate the applicability of the methodology proposed in industrial quality control is the residual 

stress measurements. There are several techniques to determine residual stresses. The only non-destructive technique 

that can be applied in quality control to crystalline materials in an industrial environment is X-ray diffraction. 

However, its application in industrial environments is problematic due to some important limitations as the 

measurement time or non-destructive measurements below the surface: A typical residual stress measurement by 

laboratory X-ray diffraction in steel takes approximately 10-15 minutes per point. This is too long for in-line quality 

control in a production environment. The low penetration of laboratory X-rays in engineering materials – typically 

15 microns in steel – means that non-destructive measurements of residuals stresses can only be performed at the 

component surface. This is a significant limitation, because in most fabrication processes the residual stress field – 

i.e., the value of residual stress vs. depth below the surface– is needed. In fact, residual stresses are already specified 

in several standards and in the drawings of some components, not only at the surface, but also at defined depths 

below the surface. Presently, the only way to measure residual stresses by diffraction below the surface in a non-

destructive way involves large-scale scientific infrastructure, i.e., neutron radiation (nuclear research reactors and 

spallation sources) and high-energy synchrotron radiation, which is not applicable to industrial production. 

Figure 0. – Physical informed neural network scheme. 



 

 

The methodology proposed solves the limitations outlined above.  

In aerospace and automotive industry, shot peening is the most widely used method to intentionally introduce residual 

stresses. The method consists of projecting small shots at high velocity over the surface of the component. The 

objective is to generate a compressive residual stress field below the surface –typically up to 0.5 mm depth. If the 

component is subjected to fatigue (as happens in many aerospace and car components), compressive residual stresses 

will counteract fatigue stresses and crack initiation will be slowed down, thus enhancing the component life. 

Consequently, the residual stress field should be known to accurately predict the fatigue life of the component. The 

resulting residual stress field depends on the material properties and the shot peening parameters, such as the mass, 

geometry and hardness of the shots, the impact velocity and the incident angle. To achieve the maximum life 

extension these parameters must be optimized.  

An efficient method to predict the residual stress profile is finite element analysis. The models consider the impact 

at high velocity of a sphere or a set of spheres on the material surface and the subsequent plastic deformation, which 

will generate compressive residual stresses up to a certain depth. The finite element simulations will be used to 

amplify the information of the residual stress field measured by X-ray diffraction at the surface. The final output is 

the residual stress profile (in-depth) as a function of the process parameters.  

The validation strategy will be divided into two parts. The first part (part A) will develop a neural network that relate 

the process parameters with the residual stress profile and the residual stress value at the surface. The neural network 

will extend the finite element simulation to the complete parameter space. The second part (part B) will formulate a 

Bayesian Neural Network to manage the statistical formulation. The numerical problem will be a stochastic character 

due to high rank of randomness of the boundary conditions. A Bayesian neural network will be introduced to model 

the conditional posterior distribution of the residual stress profile. The steps of the complete procedure are the 

following:  

• Frame the problem: The physical and mechanical fundamental equations will define the number of features 

and model space. Most of the features – dimensions of the shots, angle of impact or velocity – are stochastic, 

with known statistical distributions. The limits of the model space will be analysed in an iterative process, 

checking that all variables are inside the region under study. 

• To collect, process and explore data (Part 1): The data required for the training in part 1 will be obtained 

from numerical simulations. Consequently, data will be generated during the training process. 

• To perform in-depth analysis (Part 1): A physics informed neural network will be constructed integrating 

NN with finite element analysis. The NN relates the process parameters with the residual stress profile and 

the residual stress at the surface. The proposed algorithm, PINN, will solve together the finite element 

simulation and the neural network fitting. 

Figure 2. – Proposed methodology application to quality control, as an example of the methodology capabilities at an industrial 
environment. 



• To collect, process and explore data (Part 2): The second part of modelling will correlate the observable 

magnitude during the quality control process, the residual stress at the surface, with the process parameters. 

• To perform in-depth analysis (Part 2): A Bayesian neural network will link the uncertainty of the 

observable magnitude from the quality control and the uncertainty of the process parameters, with the final 

distribution of the residual stress profile. 

• To communicate and apply the results: The final output of these steps will be a neural network 

combination that makes use of physical laws and scatter measurements to provide and amplify the residual 

stress information and quantify the aleatoric uncertainty arising from the randomness of the shot peening 

process and the quality control measurement. 

SUMMARY 

The final target of our methodology is to formulate a new methodology to develop hybrid models to be applied in 

real time industrial applications. The new models will also be formulated in a probabilistic framework to manage the 

uncertainty by means of probabilistic neural networks.  

 

REFERENCES 

[1] L. Himanen, A. Geurts, A.S. Foster, P. Rinke, Data‐Driven Materials Science: Status, Challenges, and 

Perspectives, Adv. Sci. 6 (2019) 1900808. https://doi.org/10.1002/advs.201900808. 

[2] T. Hey, S. Tansley, K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, Redmond, WA, 

USA ., 2009. 

 


